

]

1

ANNUAL REPORT 2012

UIUC, August 16, 2012

Thermal Stress Cracking of Sliding Gate Plates

POSTECH

<u>Hyoung-Jun Lee,</u> Seong-Mook Cho, Seon-Hyo Kim

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

Brian G. Thomas

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W.Green St., Urbana, IL, USA, 61801

posco

Sang-Woo Han, Tae-In Jung, Joo Choi

POSCO Technical Research Laboratories, POSCO, Pohang, Kyungbuk 790-785, South Korea Pohang University of Science and Technology Materials Science and Engineering Hyoung-Jun Lee

Type of Cracks

Bottom view of used plate & common cracks

Schematic of rare cracks locations

Photo of common through-thickness crack

Cross section view of common crack

* Refractory component: 85% Alumina, 7% Zirconia, 8% Graphite [2] Pohang University of Science and Technology Materials Science and Engineering Hyoung-Jun Lee

I

Properties for Ladle Plate Model Validation Problem

		Symbol	Value	Units
	Initial Nozzle Temperature	T _{initial}	25	°C
	Internal Gas Temperature	T _{i,preheat}	750	°C
Preheating	Internal Convection Heat Transfer Coefficient (Forced)	h _{i,preheat}	65.24	W/m²∙K
[5]	External Ambient Temperature	$T_{o,preheat}$	200	°C
	External Convection Heat Transfer Coefficient (Free)	h _{o,preheat}	7	W/m²∙K
Casting	Molten Steel Temperature	T _{i,steel}	1550	°C
	Internal Convection Heat Transfer Coefficient (Forced)	h _{i,steel}	28719.63	W/m²⋅K
[5]	External Ambient Temperature	T _{o,steel}	270	°C
	External Convection Heat Transfer Coefficient (Free)	h _{o,steel}	7	W/m²⋅K
	Density [2]	ρ	3200	kg/m³
	Thermal Conductivity [2]	k	8.26	W/m·K
	Specific Heat [2]	C_p	1004.64	J/kg·°C
	Stefan-Boltzmann Const.	σ	5.669 x 10 ⁻⁸	W/m²⋅K⁴
	Emissivity [6]	3	0.92	-

Conditions of Bolt-load Test Problem

	₩ ≫	Bolt details[7]			
		Bolt Friction, μ	0.3		
- x		Bolt Thread Pitch, λ	1.5 mm		
Front view		Bolt Tightening Torque, $ au$	100 N-m		
		Bolt Diameter, d	20 mm		
×	x,y,z=0	Bolt Length, <i>L</i>	100 mm		
		Bolt Elastic Modulus, E	200 GPa		
	Bolt load	Axial tensile force generated in t	the bolt [8] ;		
	Constraint	$_{F} = 2\tau \left(\pi d - \mu \lambda \right)$	- 30 66		

Pohang University of Science and Technology

Results of Bolt-load Test Problem

Tundish Sliding Gate Nozzle Component / Finite Element Mesh

Properties for Tundish Sliding Gate Model

		Symbol	Value	Units
	Density	ρ_{ref}	3200	kg/m³
	Elastic modulus	E _{ref}	65 x 10 ⁹	Ра
Refractory	Poisson's ratio	V _{ref}	0.2	-
(Plates) [2,5]	Thermal Conductivity	k _{ref}	8.26	W/m⋅K
	Specific Heat	$C_{p,ref}$	1004.64	J/kg·°C
	Expansion coefficient	a_{ref}	8.2 x 10 ⁻⁶	°C-1
	Density	ρ_{steel}	7860	kg/m³
Stool	Elastic modulus	E_{steel}	206 x 10 ⁹	Ра
(Bands, Cassette)	Poisson's ratio	<i>v_{steel}</i>	0.3	-
	Thermal Conductivity	k _{steel}	48.6	W/m⋅K
[2,5]	Specific Heat	$C_{p,steel}$	418.6	J/kg·°C
	Expansion coefficient	a. _{steel}	1.78 x 10⁻⁵	°C-1
Stefan-	Stefan-Boltzmann Const.		5.669 x 10 ⁻⁸	W/m²⋅K⁴
Emissivity [6]		Eref	0.92	-
		Esteel	0.75	-
Pohang University of	f Science and Technology Ma	aterials Science and Engineering	Hyoung-Jun	Lee 13

Variables and Boundary Conditions for Tundish Sliding Gate Model

		Symbol	Preheating	Tundish Filling	Casting	Cooling	Units
Opening Ratio		-	100	0	60	-	%
Duration Time		t	210	12.5	210	267	min.
Initial Temperature		T _{initial}	25	-	-	-	°C
Internal Sink Temperature		T_i	750 (Gas)	1550 (Molten Steel)	1550 (Molten Steel)	25	°C
Internal Convection Heat Transfer Coefficient (Forced)		h _i	65	29 x 10 ³	29 x 10 ³	7	W/m²∙K
External Ambient Temperature	Inside of Cassette area	T _{o,in}	200	270	270	25	°C
	Outside of Cassette area	T _{o,out}	100	120	120	25	°C
External Convection Heat Transfer Coefficient (Free)		h _o	7	7	7	7	W/m²⋅K

Mechanical Contact

tinuous Casting

nsortium

Symmetry

middle section(X-Z plane) of all parts

"surface to surface contact" between steels, $\mu = 0.3$ [7] between refractories, $\mu = 0.1$ [2] between steel and refractory, $\mu = 0.45$ [9]

14

Thermal Behavior (Movie)

tinuous Casting Consortium

Summary of Crack Formation

Otinuous Casting Consort	Summary		Grad	SK FU	mau	01	
Y Crack Location/direct		#	Max. Principal Stress (MPa)				
	Crack Location/direction		Bolt Load	Preheat	Tundish Filling	Casting	
Upper Plate	3	1	-20	-40	50	-20	
		2	-5	20	230	240	
		3	20	25	110	80	
		4	65	35	250	250	
Middle Plate		1	0	25	50	-80	
		2	0	12	0	130	
		3	0	0	100	5	
Lower Plate	3	1	-10	-40	-10	-100	
		2	0	5	0	200	
		3	10	10	15	60	
		4	50	20	20	270	
Pohang Univer	rsity of Science and Technology Materials	Science	and Fnaineerina	Hyoung	-Jun Lee	24	

Pohang University of Science and Technology

Materials Science and Engineering

Importance of Creep Effect

Creep measurements in ceramic [10] A; constant

$$\dot{\varepsilon}_{creep} = A \sigma^n \exp\left(\frac{-Q}{RT}\right)$$

- σ ; applied stress
- n ; stress exponent

Q ; activation energy

R ; universal gas constant, 1.99 cal/K·mol T ; absolute temperature, 1723 K

[10]	Al ₂ O ₃ (%)	SiO ₂ (%)	Fe ₂ O ₃ (%)	A	σ (MPa)	n	Q (kcal/mol)	E _{creep}
BP Mullite	75.5	24.0	0.2	6.67 x 10 ⁻³	0.4	0.6	70	1.47 x 10 ⁻⁶
HF 17	78.2	21.6	0.1	6.05 x 10 ¹⁷	0.4	0.9	223	16.02 x 10 ⁻⁶
ZED FM	78.5	20.9	0.1	3.79 x 10 ⁹	0.4	0.7	152	320.40 x 10 ⁻⁶

$$\varepsilon_{el} = \frac{\sigma}{E} = \frac{0.4 MPa}{65 GPa} = 6.15 \times 10^{-6}$$

Creep effect is important, but depends greatly on material Further work is needed to determine the properties, and to add to the model Polang University of Science and Technology Materials Science and Engineering Hyourg-Jun Lee 25

Rare crack formation on middle plate can be controlled by preheating conditions (higher temperature, longer preheating time)

26

References

- [1] POSCO, Technical Research Lab., Steelmaking Research Group
- [2] Chosun Refractories Co. Ltd. Research Center
- [3] J. Chaudhuri, et. al., "New Generation Ladle Slide Gate System for Performance Improvement," 2007
- [4] K. V. Simonov, et. al., "Thermal Loading of Periclase Plates in Sliding Gates of Steel-teeming Ladles," 1980
- [5] H.J. Lee, et. al., "Thermal Stress Cracking of Sliding Gate Plates," AISTech proceeding, 2012
- [6] Monarch Instrument, "Table of Total Emissivity"
- [7] L.C. Hibbeler, et. al., "*Thermal Distortion of Funnel Molds*," AISTech proceeding, 2012
- [8] Thomas, B. G, et. al., "Analysis of Thermal and Mechanical Behavior of Copper Molds during Continuous Casting of Steel Slabs," ISS Transactions, 1998
- [9] http://www.supercivilcd.com/FRICTION.htm
- [10] J.G. Hemrick, et. al., "Compressive Creep and Thermophysical Performance of Mullite Refractories," ORNL Technical Report, 2006

Materials Science and Engineering

Pohang University of Science and Technology

Acknowledgements

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Tata Steel, Goodrich Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/POSCO, SSAB, ANSYS-Fluent)
- National Center for Supercomputing Applications (NCSA) at UIUC – "Tungsten" cluster
- POSCO Sung-Kwang Kim, Kwon-Myung Lee Dae-Woo Yoon
- UIUC Lance C. Hibbeler

28

1

27

Hyoung-Jun Lee